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People	image	that	nuclear	radia4on	are	like	the	light	coming	from	the	sun,	only	much	
stronger	and	penetra4ng.	Therefore,	similarly	to	the	sun	light,	they	think	that	the	
radia4on	intensity	and	the	4me	exposi4on	(namely	the	absorbed	dose)	are	enough	to	
quan4fy	the	radia4on	effects.	But	this	image	is	not	realis4c.	
Nuclear	radia4ons	are	like	a	rose	of	hun4ng	bullets,	with	more	or	less	scaEered	
buckshot.	The	bullets	dose	is	not	enough	to	describe	the	effect	on	the	living	target.	
The	bullets	calibre	plays	a	fundamental	role	for	the	animal	surviving.	
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For	a	human	cell	(10	µm)	1014	par4cle/cm2·s	are	necessary	to	have,	on	average,	more	
than	1	par4cle	before	the	end	of	the	physical-chemical	stage.	
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Microdosimetry	is	necessary	to	monitor	the	radia4on	quality	(the	rela4ve	biological	
effect)	of	mixed-radia4on	fields.		
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2	data.txt	file	will	be	provided	to	perform	the	exercise.	
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Following	the	hun4ng	analogy,	the	same	dose	of	bullets	can	be	provided	by	small,	
medium	or	big	calibre	bullets.	The	biological	effect,	for	the	same	dose	of	“bullets”,	
increases	with	the	bullet	calibre.	
More	properly,	the	bullet	calibre	is	called	“imparted	energy”	to	one	of	the	small	
spherical	volumes	in	which	the	target	is	divided	in	the	figure.	
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The	energy	imparted	is	simply	the	difference	between	the	energy	entering	into	the	
volume	and	the	energy	outgoing	from	the	volume.	If	nuclear	reac4on	occur	inside	the	
volume,	part	of	the	incoming	par4cle+nucleus		mass	can	be	transformed	in	energy	
(e.g.	neutron	absorp4on)	that	energy	has	to	be	added	(Q-value	posi4ve).	On	the	
contrary	if	part	of	the	kine4c	energy	of	the	incoming	par4cle	is	spent	just	to	make	the	
nuclear	reac4on	possible,	that	energy	has	to	be	subtracted	(Q-value	nega4ve).		
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There are two ways of describing the energy-imparted density in a target: 
in a point P or in a volume V. 
1.  The energy imparted (here called œ) in a point P is always 0. 

However, the limè0 of the ratio œ/m can be different than 0. The 
limè0 operator operates on continuous functions. Therefore, œ has 
to decrease uniformly with m decrease. Such picture hold only if a 
very large number of particles cross the mass m for any value of m 
and they are imaged to slow down continuously (CSDA 
approximation). In that conceptual frame, the energy-imparted 
density in the point P acquire a single value, called the dose in P, 
namely  Dp.. The subscript P is used only here for sake of clarity. 

2.  The energy-imparted density œ/m in a volume V  can acquire many 
different values from particle to particle, because the indetermination 
dominates the collision physics at atomic and nuclear level. The œ/m  
fluctuation size decreases by increasing the  number of particles 
crossing V, but it never becomes 0.  

 
 Therefore, we have two sets of physical concepts, which we can  
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Similarly to the energy-imparted density, there are two ways of describing 
the energy-imparted linear density in a target: in a point P or in a volume 
V. 
1.  The energy imparted œ in a point P by charged particles of a given 

charge and velocity is always 0. However, the limè0 of the ratio œ/
∆x can be different than 0. The limè0 operator operates on 
continuous functions. Therefore, œ has to decrease uniformly with 
∆x decrease. Such picture hold only if the particles are imagined to 
cross the mass thickness ∆x slowing down continuously and without 
loosing energy outside the track line (CSDA approximation). In that 
conceptual frame, the energy-imparted linear density in the point P 
acquire a single value, called linear energy transfer in P, namely  
LETp.. The subscript P is used only here for sake of clarity. 

2.  In a volume V where particles can arrive from any direction, the ratio 
of the energy-imparted œ to the V on its mean chord length (here 
called L), namely  œ/L, is called lineal energy y of the single 
charged particle in the volume V. y can acquire many different values 	
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Note	that	the	frequency	distribu4on	is	actually	a	density	distribu4on,	since	it	is	not	
dimensionless,	but	its	physical	dimension	is	the	inverse	of	the	stochas4c	variable	
dimension:	1/(keV/µm)	for	y	and	1/Gy	for	z1	
	
Because	the	energy	imparted	in	the	volume	V	depends	also	on	the	par4cle	track	
length	inside	V,	which	varies	from	0	to	the	maximum,	the	frequency	distribu4on	does	
not	show	sharps	peaks	that	can	be	use	for	energy	calibra4on	in	the	microdosimetric	
measurements.		
	
However,	rapid	falls	of	counts,	called	edges,	can	be	some4me	noted.		
Electron	edge:	the	fall	is	posi4oned	near	the	maximum	œ-value	due	to	one	electron	
in	V	.	
Proton	edge:	the	fall	is	posi4oned	near	the	maximum	œ-value	due	to	one	proton	in	
V	.	
	
The	edges	can	be	used	for	energy	calibra4on	in	microdosimetric	measurements.	
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The mass density and the linear density of œ in V are not independent stochastic 
variables. The relating algorithm depends on the volume shape, size and density. 
 
For cylindrical volumes, the constant in the relating algorithm depend also on the 
radiation field directionality, which contributes to define the mean chord length L.   
 
NOTE. The specific energy is proportional to the lineal energy, but the constant of 
proportionality includes the the inverse of the square of V diametre.  For the same 
lineal energy (~ same LET) the specific energy (the microscopic dose in V) increases 
rapidly with the V decrease. This finding simply explain why the absorbed dose can 
not assess the initial biological damage. 
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NOT	all	the	œ	value	increase	the	dose	equally.	The	rela4ve	increase	of	the	dose	due	
to	events	of	size	œ	is	the	product	of	œ	by	the	rela4ve	number	of	events	of	this	size,	
namely	œ·f(œ).	 	 Therefore,	 the	 rela4ve	DOSE	 INCREASE,	due	 to	events	of	y	 size,	 is	
y·f(y)	 .	 Dividing	 the	 product	 by	 the	 normalisa4on	 factor,	we	 obtain	 the	 probability	
distribu4on	 of	 the	 dose.	 FREQUENCY	 DISTRIBUTION	 	è	 DOSE	 DISTRIBUTION.	 The	
dose	distribu4on	is	obtained	from	the	measured	frequency	distribu4on.	
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Because	 of	 the	 large	 range	 of	œ	 values	 as	well	 of	 the	 large	 range	 of	œ	 frequency	
occurrence,	f(y)	and	d(y)	have	to	be	shown	in	double	logarithmic	plots,	which	are	not	
of	easy	lecture.	Therefore,	the	usual	representa4on	of	the	dose	distribu4on	of	y	is	to	
plot	 y·d(y)	 against	 y	 in	 a	 semi-log	 plot.	 In	 such	 a	 representa4on	 the	 rela4ve	
contribu4ons	 to	 the	 absorbed	 dose	 of	 different	 œ	 events	 can	 be	 deduced	
(qualita4vely)	at	glance	without	necessity	of	calcula4ons.	
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The	 average	 values	 of	 the	 distribu4ons	 are	 handled	 easier	 than	 the	 distribu4ons,	
although	they	represent	a	strong	simplifica4on	of	the	interac4on.	
	
The	 single-par4cle	 	 microdosimetric	 mean	 values	 are	 DETERMINISTC	 variable.	 In	
other	words	 	they	acquire	ALWAYS	THE	SAME	VALUE	(if	the	sta4s4cs	is	high,	namely	
if	 the	 total	 number	 of	 events	 of	 spectra	 is	 high)	 in	 stable	 and	 steady	 condi4ons.	
However,	 they	 are	 not,	 neither	 conceptually	 nor	 numerically,	 equal	 to	 the	
DOSIMETRC	quan44es.	In	fact	the	mean	value	Z1	does	not	depends	on	the	dose.	Its	
value	 is	 always	 the	 same	 at	 any	 dose.	 Similarly	 the	mean	 value	 Y	 changes	 with	V	
thickness	even	if	the	LET	value	does	not	change.		
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The	next	step	is	to	find	the	rela4onships	between	the	two	different	means.	
Again:	 the	 mass-density	 of	 the	 energy	 imparted	 to	 V	 increases	 strongly	 with	 the	
decrease	of	the	volume	diametre,	also	if	the	y-value	does	not	change.		
Example:	proton	of	4	MeV	è	0.2	mm	of	range	 in	4ssue	è	1µm	is	crossed	without	
loosing	 velocity	 significantly	 	è	 the	mean	 y-value	 is	 the	 same	 when	 the	 proton	
crosses	1µm	volume	or	0.1µm	volume	(	10	keV/µm).	.	HOWEVER,	the	mean	specific	
energy	Z1D	(we	can	call	it	“micro-dose”	in	the	volume	V)	in	the	0.1	µm	volume	is	100	
4me	higher	than	that	one	in	1	µm	volume.	
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The	 single-par4cle	 	 microdosimetric	 mean	 values	 are	 DETERMINISTC	 variable:	 in	
stable	and	steady	condi4ons	they	acquire	ALWAYS	THE	SAME	VALUE	(if	the	sta4s4cs	
is	high,	namely	if	the	total	number	of	events	of	spectra	is	high)	
However,	 they	 are	 not,	 neither	 conceptually	 nor	 numerically,	 equal	 to	 the	
DOSIMETRC	quan44es.	 In	fact	Z1	 (mean	of	the	z1	distribu4on)	does	not	depends	on	
the	 dose,	 its	 value	 is	 always	 the	 same	 at	 any	 dose.	 Similarly	 the	Y	 (mean	 of	 the	 y	
distribu4on)	value	changes	with	V	thickness	even	if	the	LET	values	does	not	change.		
	
	The	“mathema4cal	and	conceptual	bridge”	from	microdosimetry	to	dosimetry	is	the	
mul4-event	 distribu4on	 of	 specific	 energy	 z.	 Note	 that	 z	 is	 the	mass-density	 of	œ	
when	mul4	par4cle	(not	a	single	par4cle)	cross	V	.	
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Also	 z	 is	 a	 stochas4c	 variable.	 However,	 the	mean	 value	 of	 z	 in	 the	 volume	V	 is	 a	
determinis4c	 variable.	 If	 the	 material	 density	 is	 uniform	 in	 V	 and	 if	 the	 par4cle	
fluence	is	uniform	in	V,	 	the	mean	value	of	z	at	the	dose	D	is	just	the	dose	Dp,	where	
the	point	P	is	the	centre	of	the	volume	V.		
The	microdosimetric	quan4ty	z1	leads	to	D	when	Vè0		many	par4cles	cross	V		at	any	
size	and	the	interac4on	is	con4nuous	(CSDA	approxima4on).		
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Microdosimetry	quan44es	are	OPERATIVE	quan44es.	Microdosimetry	has	been	
conceived	to	be	an	EXPERIMENTAL		approach	to	the	radia4on	physics.	The	data	
acquisi4on	system	is	typical	of	nuclear	spectroscopic	measurements.	The	data	
acquisi4on	system	to	be	used	in	clinic	can	be	very	compact.			
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The	experimental	microdosimetry	in	radia4on	therapy	is	a	model	that	simply	states:	
we	measure	with	a	4ssue-equivalent	detector	the	ini4al	damage	in	a	piece	of	4ssue.	
The	4ssue-equivalence	is	intended	as	imparted-energy	equivalence.	
The	 	model	 is	 certainly	a	 simplifica4on	of	 the	 interac4on	 radia4on-maEer,	but	 it	 is	
realis4c,	since	the	4ssue	complexity	 involve	atomic	and	chemical	bonds,	the	energy	
of	which	(eV)	is	much	less	than	the	imparted-energy.		
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A	 4ssue-equivalent	 gas	 propor4onal-counter	 (TEPC)	 with	 a	 small	 (1mm)	 sensi4ve	
volume.	 We	 call	 it	 mini-TEPC.	 The	 cathode	 wall	 is	 thick,	 since	 it	 houses	 an	 alpha	
source.	
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This	 mini-TEPC	 is	 “naked	 because	 it	 is	 without	 field	 tubes	 and	 calibra4on	 alpha	
source.	 Because	 of	 that,	 the	 detector	 encumbrance	 is	 small	 (	 2.7	 mm	 of	 external	
diametre).		
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The	naked	mini-TEPC	is	 inserted	in	a	2.7mm	4tanium	sleeve.	It	can	be	used	also	for	
internal	body	measurements,	with	a	8	French	cannula.	
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2D	mini-TEPC	counter	is	an	array	of	cylindrical	TEPCs	of	2	mm	diameters	and	height.	
The	sensi4ve	volumes	are	defined	by	the	electric	field	lines.	
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Two	mini-TEPCS	assembled	together	inside	an	aluminium	sleeve.	The	cathode	wall	of	
one	of	them	is	doped	with	50ppm	of	10B.	This	“twin	mini-TEPC”	is	able	to	monitor	the	
ini4al	 damage	 that	 is	 generated	 in	 a	 normal	 living	 cell	 and	 in	 a	 cell	 drugged	 with	
50ppm	of	10B	exposed	to	a	neutron	field.		
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The	twin	mini-TEPC	before	being	inserted	inside	the	aluminium	sleeve.	
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The	thick	anode	of	this	unusual	gas	propor4onal	counter	is	surrounded	by	one	helix,	
the	 aim	of	which	 is	 to	 confine	 the	 electronic	 avalanche	 inside	 itself.	 In	 such	 a	way	
80%	of	sensi4ve	volume	is	avalanche	free	also	at	very	low	gas	pressure.	This	“trick”	
allows	to	measure	microdosimetric	spectra	in	very	small	sensi4ve	volumes,	 in	order	
to	monitor	the	ini4al	damage	in	biological	structures	less	than	1	µm	of	size	(down	to	
0.025	µm).	
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∆E-E	detectors	are	used	in	nuclear	physics	to	recognise	charge	and	energy	of	par4cles	
hipng	the	detector.	In	microdosimetry,	this	feature	allows	to	dis4nguish	the	energy	
imparted	œ	 due	 to	 the	 different	 charged	 par4cles	 of	 a	 mixed-radia4on	 field.	 This	
allows	also	to	choose	pulse	by	pulse	the	right	factor	to	scale	from	œ	in	silicon	to	œ	in	
4ssue.	
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An	array	of	cylindrical	silicon	microdosimeter.	
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Ar4ficial	 diamond	 are	 already	 used	 to	 measure	 the	 dose	 in	 clinic.	 Recent	
technological	 advances	 have	made	 it	 possible	 	 to	manufacture	 very	 thin	 sensi4ve	
volume	of	micrometric	thickness.	

31	



Gas	detectors	allow	to	amplify	the	electrical	charge	generated	in	the	sensi4ve	volume	
by	an	 ionizing	par4cle.	Therefore,	 they	can	measure	very	small	œ	values.	However,	
they	need	high	voltage.	Moreover,	they	hardly	can	have	sensi4ve	volumes	less	than	1	
mm	 of	 geometrical	 size.	 On	 the	 contrary,	 solid	 state	 detectors	 can	 be	 very	 small.	
Moreover,	they	do	not	need	high	voltage.		
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Although	 the	 same	 dose	 is	 imparted,	 radiobiological	 effects	 can	 be	 quan4ta4vely	
different	with	kind	and	energy	of	the	par4cle.		A	way	to	quan4fy	this	difference	is	the	
RBE	(ra4o	of	gamma	rays	dose	on	par4cle	dose	to	obtain	the	same	effect).	RBE10	 is	
the	 dose	 ra4o	 measured	 at	 10%	 of	 cell	 surviving	 frac4on.	 Changing	 the	 surviving	
frac4on,	 the	 RBE	 value	 can	 change.	 	 	 Many	 radiobiological	 experiments	 have	
correlated	 RBE	 values	 with	 LET	 values.	 Radiobiological	 data	 of	 a	 laboratory	 have	
precision	of	~	10%,	but	when	 the	 results	of	different	 laboratories	are	put	 together,	
data	fluctuate	much	more.	
One	manner	to	quan4fy	the	“radia4on	field	quality”	 	 is	 to	calculate	 its	average	LET	
value.	
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The	dose-mean	y-value	can	monitor	the	dose-mean	LET	value	of	a	proton	beam?	
(remember	that	the	mean	value	of	d(y)	is	not		equal	neither	conceptually	nor	
numerically	to	the	dose-mean	LET)	Yes,	mini-TEPC	can	do	it	preEy	well.	Silicon	
detector	can	do	it	only	par4ally.	
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The	 reason	of	 the	only	par4al	 capability	of	 silicon	detectors	 to	monitor	 LET	 is	 their	
small	detec4on	efficiency,	 since	 they	are	not	able	 to	measure	very	 small	œ	 values,	
because	of	the	electronic	background	noise.	
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Microdosimeters	can	also	monitor	the	RBE	by	using	the	response	func4on	r(y).		
r(y)	 	 is	 the	 cell	 response	 to	 an	 event	 of	 size	 y.	 This	 func4on	 can	 not	 	 be	 directly	
measured.	 However,	 it	 can	 be	 extracted	 by	 a	 set	 of	 integral	 equa4ons	 where	 the	
radiobiological	RBE	value	is	equalled	to		the	microdosimetric	RBE	value.	
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Microdosimetric	RBE	values	(RBEmicros)		of	the	therapeu4c	proton	beam	of	Nice	fit	
well	the	radiobiological	RBE	data	taken	in	the	same	proton	beam.	
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Similar	measurements	have	been	recently	repeated	at	the	CATANA	therapeu4c	beam	
with	 a	 SEALED	 mini-TEPC.	 RBEmicros	 data	 superimpose	 well	 the	 linear	 best	 fit	 of	
literature	RBE	data.	
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BNCT	 is	 a	 binary	 radia4on	 therapy.	 The	microdosimetric	 spectrum,	 taken	with	 the	
twin	mini-TEPC,	shows	the	three	main	components	of	the	dose.	The	3	rela4ve	dose	
components	can	be	measured	with	~	5%	of	accuracy.	The	microdosimetric	spectrum	
can	 be	 used	 to	 quan4fy	 the	 total	 radia4on	 quality	 as	 well	 as	 the	 quality	 of	 any	
radia4on	component.	
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Because	œ	values	can	span	on	more	than	4	orders	of	magnitude,	the	pulse	from	the	
charge	pre-amplifier,	which	has	to	have	a	large	enough	dynamic	range,	is	differently	
amplified	by	three	linear	amplifiers	that	feed	three	DAQs,	in	order	to	have	the	same	
resolu4on	both	for	small	pulses	and	big	pulses.	
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In	 the	 figure	 the	 standard	 acquisi4on	 system	 used	 in	 applied	 nuclear	 physics	 for	
spectroscopic	measurements.	 It	 certainly	 appears	 rather	 cumbersome.	 However,	 it	
can	be	reduced	to	a	small	portable	box	for	clinic	microdosimetric	applica4ons.	
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From	 the	 three	 linear	 amplifiers	 we	 obtain	 three	 sub-spectra,	 which	 are	
conven4onally	called	low-LET,	medium-LET	and	high-LET	sub-spectrum.	
Pay	aEen4on	 that	 the	 count	number	 in	ordinate	 is	 actually	 the	numbers	of	 counts	
per	DAQ	channel	size	(a	count	density).	
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After the channel è mV calibration, the DAQ’s channel width becomes the voltage 
width ∆V.  Therefore, the count number is the number of counts per ∆V of a DAQ 
channel size. During the amplifiers setting, attention has to be paid in order to have 
part of sub-spectra in the same ∆œ range, that means a partial superimposition of the 
sub-spectra. 
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Thanks	to	the	par4al	superimposi4on,	the	three	sub-spectra	can	be	ver4cally	shited	
to	be	joined	together,	in	order	to	obtain	a	single	spectrum	with	the	same	resolu4on	
at	 any	œ-value	 decade.	 Since	 the	 final	 results	 will	 be	 in	 a	 semi-log	 	 plot,	 equal	
resolu4on	for	small	and	big	œ-values	means	equal	data	interval,	where	the	intervals	
are	in	logarithmic	scale.	In	order	to	obtain	that	result,	the	original	counts	(which	were	
acquired	in	a	linear	array	of	different	œ-values	or	y-values)	have	to	be	compacted	in	
equally	 spaced	 logarithmic	 intervals	 (in	 the	 figure	 the	 example	 of	 60	 logarithmic-
equal	intervals	per	decade).		
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Ater	the	 joining	of	the	tree	sub-spectra,	we	obtain	a	single	spectrum,	which	has	to	
be	 normalized	 to	 obtain	 f(œ).	 Note	 that	 the	 physical	 dimension	 of	 the	 stochas4c	
variable	œ	is	now	mV.	The	product	func4on		f(mV)·mV	has	to	be	normalized	again	to	
obtain	d(mV).	
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The	product	spectrum	œ·d(œ)	(explici4ng	the	pysical	dimensions:	 	mV·d(mV)	shows	
some	clear	structures.	The	peak	at	low	œ-values	is	noise.	The	fall	at	about	30	mV	is	
the	electron	edge.	The	fall	at	about	500	mV	is	the	proton	edge.	The	last	fall	 is	used	
for	the	spectrum	calibra4on.	Pulling	a	straight	 line	tangent	to	the	fall	 inflec4on,	the	
intercept	with	 the	0X	 axis	 gives	 the	 calibra4on	point	 value	 (500	mV).	On	 the	other	
side,	we	know	that	the	maximum	imparted	energy	of	a	proton	in	a	4ssue	site	of	1.5	
µm	is	149	keV.	Dividing	that	value	for	the	mean	chord	length	of	the	counter	sensi4ve	
volume	(1.0	µm),	we	obtain	the	lineal	energy	of	149	keV/µm.	Therefore,	mul4plying	
the	0X	axis	by	the	ra4o	149/500,	we	obtain	the	spectrum	calibrated	in	lineal	energy	
expressed	in	keV/µm	physical	units.		
NOTE1.	Ater	the	0X	scaling,	it	is	necessary	re-normalize	the	dose	spectrum	to	obtain	
d(y)	and	hence	the	correct	yd(y)	spectrum.	
NOTE2.	 	 The	product	œ·d(œ)	as	well	 as	 the	product	yd(y)	are	dimensionless,	 since	
d(œ)	 and	 d(y)	 are	 (normalized)	 count	 densi4es	 with	 dimension	 1/œ	 and	 1/y	
respec4vely.	
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Ater	the	lineal	energy	calibra4on,	the	microdosimetric	spectrum	has	to	be	corrected	
(extrapolated)	in	order	to	cancel	the	electronic	noise	and	to	include	those	imparted-
energy	events	that	were	not	measured.	The	procedure	is:	1.	Chose	on	yd(y)	spectrum	
a	small	region	just	outside	the	noise	peak	(0.3	–	0.4	keV/µm	in	the	figure).	This	data	
interval	is	supposed	to	be	due	only	to	the	radia4on	field.	2.	Extrapolate	linearly	in	the	
f(y)	distribu4on	the	experimental	points	of	the	selected	region	to	y	=	0.01keV/µm	(it	
is	about	one	ioniza4on	event	in	the	coun4ng	gas	of	the	mini-TEPC)	.	3.	Subs4tute	in	
the	f(y)	distribu4on	the	the	data	of	y	<	0.3	keV/µm	with	the	straight	line	data.	4.	Re-
normalize	the	new	f(y)	spectrum.	5.	Calculate	the	y·f(y)	spectrum	and	normalize	the	
product	spectrum	to	obtain	d(y).	6.	Eventually,	calculate	the	product	spectrum	y·d(y).	
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The	complete	microdosimetric	spectrum	shows	three	large	“hills”,	the	visual	area	of	
which	is	their	rela4ve	dose	contribu4on.	Calcula4ng	the	visual	areas,	we	obtain	that	
the	absorbed	dose	is	due	to	gamma	rays		for	the	70%,	to	protons	for	the	25%	and	to	
light	ions	for	the	5%	
	
NOTE.	Only	the	mean	values	of	f(y)	and	d(y)	of	the	complete	spectrum	(that	means	
from	0.01		to	ymax)		have	to	be	used.	The	mean	values	of	an	incomplete	spectrum	do	
not	represent	the	microdosimetric	mean	values	of	the	equivalent	4ssue	site.	
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The	 2	 spectra	 of	 data	 taken	 at	 the	 therapeu4c	 facility	 of	 CATANA	 in	 the	 Proximal-
Edge	(blue	circles)	and	 in	the	Distal-Edge	(red	circles)	of	 the	SOBP	used	for	trea4ng	
ocular	melanoma.	The	spectra	(right	side	figure)	are	the	results	of	the	 junc4on	of	3	
sub-spectra	 ater	 the	 calibra4on	 in	 mV.	 The	 spectra	 are	 semi-log.	 The	 OX-axis	 is	
logarithmic.	The	original	linear	data	have	been	compacted	in	300	equal	intervals	per	
decade.	The	exercise	consists	of	reading	the	enclosed	spectra	(given	od	two	TXT	files	
(first	column	is	the	mV	channel	value,	the	second	column	is	the	number	of	counts	for	
channel	 (count	 number/	 mV	 interval-value	 of	 the	 channel).	 The	 exercise	 con4nue	
performing	 manually	 all	 the	 opera4on	 to	 obtain	 the	 two	 final	 microdosimetric	
spectra.	In	the	following,	the	steps	to	perform	to	arrive	at	the	end	of	the	exercise	are	
shown.	
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This	step	is	op4onal.	It	is	useful	only	to	see	that	the	spectra	normalised	to	1	(the	data	
have	 to	 be	 divided	 by	 the	 spectrum	 integral	 value)	 are	 correct,	 since	 the	 absolute	
values	of	the	spectra	depend	on	the	coun4ng	4me.	
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This	data-processing	step	is	for	for	changing	the	y	values	from	mV	values	to	keV/µm	
values	in	liquid	water.	
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This	 step	 is	 to	 extrapola4ng	 the	 n(y)	 data	 down	 beyond	 the	 detec4on	 threshold,	
down	to	0.0keV/µm	(~	1	ionisa4on	event	in	propane	gas).	
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This	 step	 is	 to	 normalise	 the	 the	 extrapolated	 n(y)	 spectrum.	 Only	 ater	 the	
normalisa4on	the	spectrum	is	called	f(y).		
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This	step	is	to	obtain	the	d(y)	distribu4on	by	mul4plying	f(y)	per	y	and	re-normalising	
again	the	resul4ng	distribu4on.	Eventually,	mul4ply	d(y)	per	y	(without	re-normalise	
again)		to	obtain	the	“visual”	dose	distribu4on	of	y.	The	mean	spectral	value	YF	and	YD	
are	calculated	by	using	the	f(y)	and	d(y)	distribu4ons	respec4vely.	
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Ater	 the	 comple4on	 of	 the	 “distal-edge”	 spectrum	 processing,	 repeat	 everything	
with	the	“proximal-edge”	spectrum.	At	the	3rd	step	(calibra4on),	use	the	calibra4on	
factor	found	for	the	distal-edge	spectrum.		
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