Belgrade, 12-14 March 2018

Research and networking activities @ INFN-Laboratori Nazionali del Sud

Pietro Pisciotta, Giada Petringa, Pablo Cirrone, **Giorgio Russo and Giacomo Cuttone**

Workflow

Introduction

Multidisciplinary beamlines

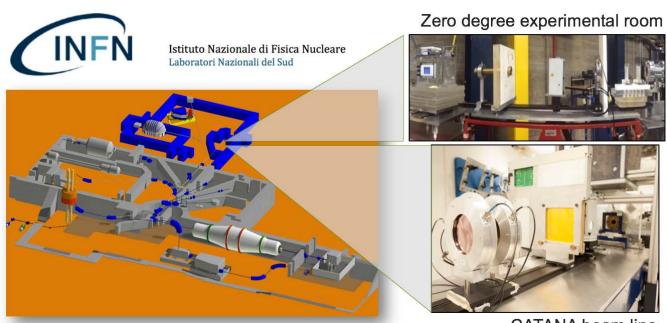
CATANA, ZERO DEGREE beamlines @LNS TIFPA beamlines

LET & RBE implementation

DICOM imaging

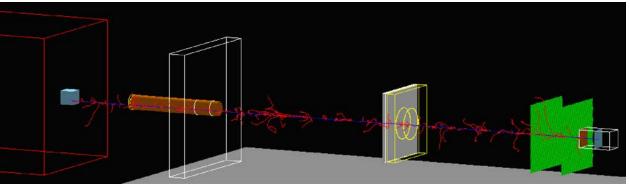
DICOM in preclinical studies:

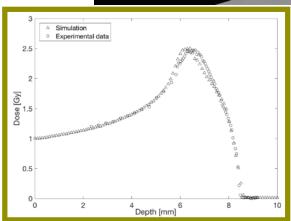
Hypoxia project RBE studies

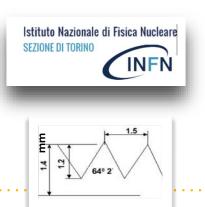


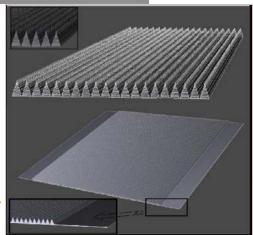
IORT-therapy and LASER-driven app.

New geometry in iort-therapy Laser-driven application ELIMED project

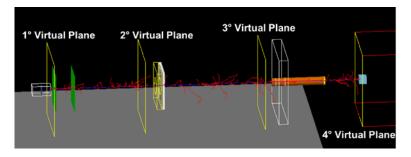

Multidisciplinary beamlines

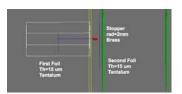


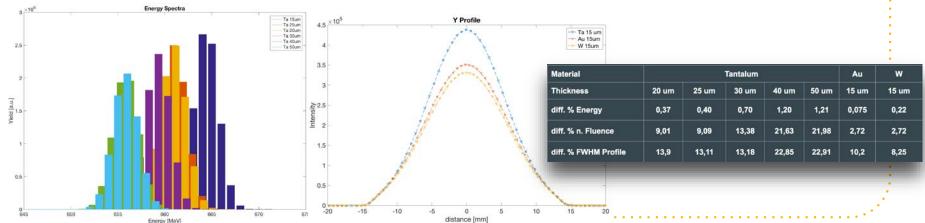



CATANA beam line

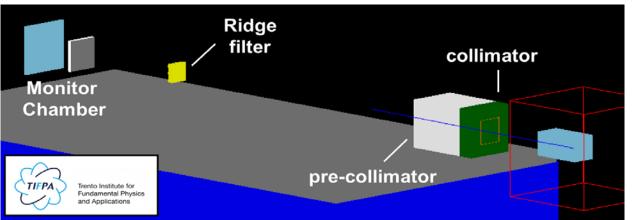
Zero Degree beamline simulation


first second third



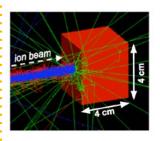

Feasibility study of two configurations:

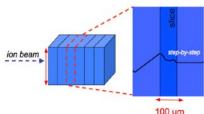
- a single scattering foil in vacuum
- two scattering foils with a stopper



last

TIFPA beamline simulation


Passive proton beam line


Finergy: from 70 MeV to 250 MeV

Fluence: from 105 to 108 p/sec

LET calculation: the approach

New implementation

LET track

$$LET_{t} = \sum_{i=1}^{n} \left(\frac{\varepsilon_{i}}{l_{i}}\right) w_{i,t} = \frac{\sum_{i=1}^{n} \left(\frac{\varepsilon_{i}}{l_{i}}\right) l_{i}}{\sum_{i=1}^{n} l_{i}} = \frac{\sum_{i=1}^{n} \varepsilon_{i}}{\sum_{i=1}^{n} l_{i}}$$

LET dose

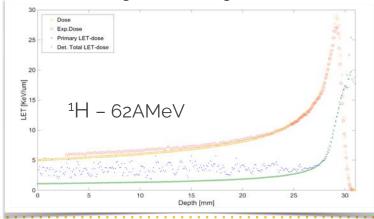
 $\text{LET}_{d} = \sum_{i=1}^{n} \left(\frac{\varepsilon_{i}}{l_{i}}\right) w_{i,d} = \frac{\sum\limits_{i=1}^{n} \left(\frac{\varepsilon_{i}}{l_{i}}\right) \varepsilon_{i}}{\sum\limits_{i=1}^{n} \varepsilon_{i}} = \frac{\sum\limits_{i=1}^{n} \frac{\varepsilon_{i}^{2}}{l_{i}}}{\sum\limits_{i=1}^{n} \varepsilon_{i}} \qquad \qquad \\ L_{d} = \frac{\sum_{n=1}^{N} \left[\frac{\left(\sum_{s=1}^{S_{n}} \varepsilon_{sn}\right)^{2}}{\sum_{s=1}^{S_{n}} l_{sn}}\right]}{\sum_{n=1}^{N} \sum_{s=1}^{S_{n}} \varepsilon_{sn}}$

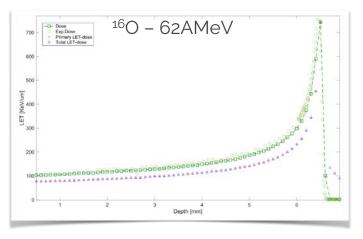
Higher dependence by transport parameters: cut, voxel size, step max

New implementation

$$L_{d} = \frac{\sum_{n=1}^{N} \left[\frac{(\sum_{s=1}^{S_{n}} \varepsilon_{sn})^{2}}{\sum_{s=1}^{S_{n}} l_{sn}} \right]}{\sum_{n=1}^{N} \sum_{s=1}^{S_{n}} \varepsilon_{sn}}$$

 ε_{sn} is calculated as the energy deposited by the primary proton along the step plus the kinetic energy of the δ -rays released in the medium in that step


Goal: each term is created by grouping the energy losses and lengths of all the steps done within the voxel. Thus, the contributions of each particles are mediate into the voxel.


M.G. Cortes et al. "A critical study of different Monte Carlo scoring methods of dose averaged linear-energy- transfer maps calculated in voxelized geometries irradiated with clinical proton beams", Phys. Med. Biol. 60 (2015) 2645-2669

first

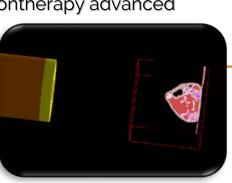
LET calculation: studies

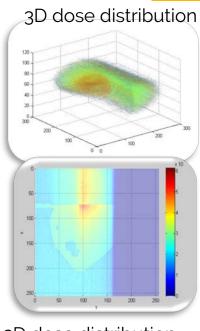
- Production cut dependence of dose averaged LET distributions
- Implementation of a new algorithm for total dose-average and trackaverage LET
- Validation of dose-average and track-average LET using ICRU tables

¹H, ⁴He, ⁶Li, ⁹Be, ¹¹B, ¹²C, ¹⁴N and ¹⁶O

DICOM in *hadrontherapy*

State of the art


- Experimental validation using gafchromic films and ionization chamber
- Preliminary in vivo test:
 - Small animal treatment plans;
 - Dose distribution and LET evaluation.


Future aims:

Implementation within public hadrontherapy advanced example version;

* Implementation RBE calculation.

2D dose distribution

first

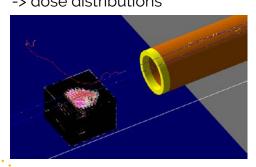
second

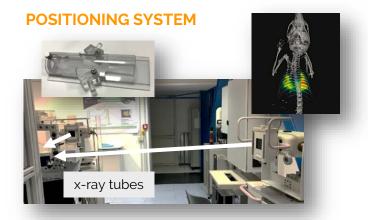
third

last

.

Hypoxia study

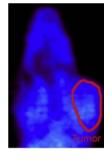


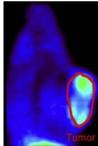

PET/CT

PRE-TREATMENT

Simulation using Geant4 app. -> dose distributions

DICOM PET AND CT: the images will be used to calculate the coordinates for each dose-shot


Holding SYSTEM will permit the animal positioning guaranteeing the possibility to use the PET/CT system of coordinates


X-RAY TUBES will permit to place the holding system at the origin of system of coordinates

TREATMENT

Escalation dose on hypoxia region

HIGH O₂ LOW O₂

Myelopathy study

second

third

last

The aims of this project are:

The aims of this project are:

first

To study in vivo the RBE along the Bragg peak that shows high LET values differences;

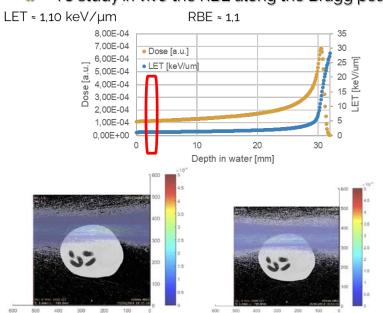


Figure 4: Pristine Bragg peak - One treatment field coming | Figure 5: Pristine Bragg peak - Two opposite treatments | beams coming from left and right sides

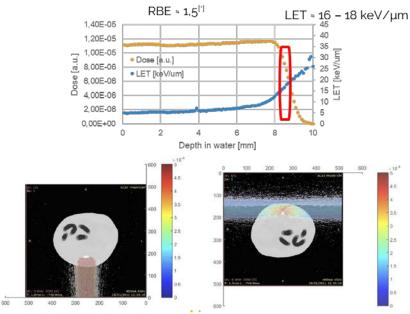
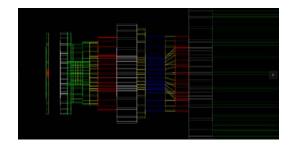
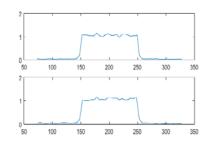


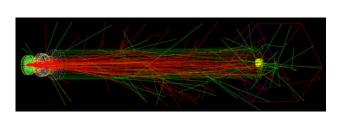
Figure 6: Spread-Out Bragg Peak - One treatment field Figure 7: Spread-

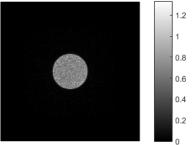
Figure 7: Spread-Out Bragg Peak - Two opposite treatments beams coming from left and right sides

Iort-therapy advanced example

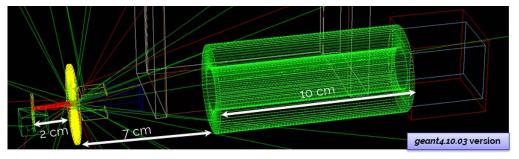

 $\times 10^{-5}$

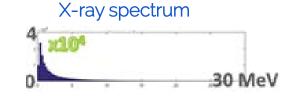

STATE-OF-ART:

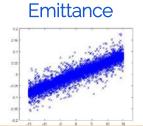

 Implementation of NOVAC7 and LIAC10 geometry;


FUTURE AIMS:

- Goodness evaluation of Geant4 results (PDD, lateral profile @R100); beam;
- Output factor calculation;
- Radioprotection assessment.


Laser-driven electron application

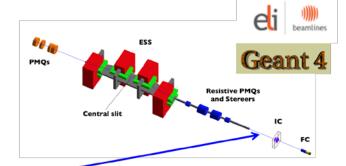

STATE-OF-ART:

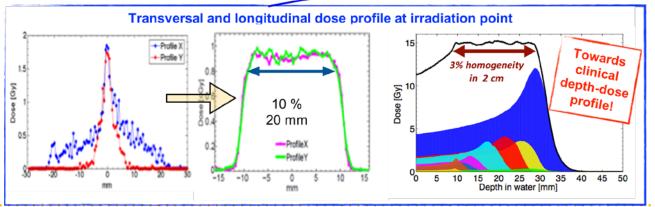

- Implementation of a laser-driven electron spectrum;
- Production of bremsstrahlung X-ray source;
- Collimation system;
- 3D dose distribution and profiles.

FUTURE AIMS:

- Image quality and dose assessment for diagnostic scopes;
- Radioprotection studies;
- Preclinical imaging.

PRIN 2015: Clinically Compatible Tool For Advanced
Translational Research with Ultrashort and Ultraintense X-ray
Pulses





ELIMED laser-driven beamline

STATE-OF-ART:

- User beam line for future multidisciplinary applications
 aELI Beamlines
- Monte Carlo simulation aimed at predict energy and dose distributions along the beam line and at the irradiation point
- Optimization of transversal and longitudinal dose distributions for clinical interests

[&]quot;Monte Carlo simulation of the ELIMED beamline using Geant4", Pipek J. et al., J. Instr. 12 (2017) C03027

Thanks

Any questions?