PRONTO: Protontherapy and nuclear techniques for oncology Research and networking activities at GFN-UCM

L.M. Fraile Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense, E-28040 Madrid, Spain

✓ Production of radioisotopes

- \rightarrow Multiple PET
- \rightarrow Cross-sections
- \rightarrow Application to proton-induced activity in PT

✓ PRONTO

- \rightarrow Motivation
- \rightarrow Description of the project
- \rightarrow Objectives

✓ Research and development on detectors → Digital signal processing

Simultaneous imaging of 2 PET tracers

PROBLEM: All annihilation gamma-rays have the same energy: 511 keV

PROPOSED SOLUTION: mPET

1) Use of (β^+) & $(\beta^+\gamma)$ Emitters

- 2) Detect Triple Coincidences
- 3) Reconstruction & Separation

TRACER A : labeled β⁺ emitter Standard (e.g., ¹⁸F, ¹³N) DOUBLES

TRACER B : labeled β⁺γ emitter Non-standard (e.g., ¹²⁴I, ⁷⁶Br) <u>TRIPLES</u>

<u>A. Andreyev</u> et al. PMB 2011 <u>E. Lage</u> et al Med. Phys, 2015 <u>J. Cal-Gonzalez</u> et al. PMB 2015

Several suitable $\beta^+\gamma$ emitters exist

A sample of $\beta^+\gamma$ emitters

	T _{1/2} Half-life	β ⁺ branching ratio (%)	Main Prompt γ [keV] & intensity [%]	Production
⁸² Rb	1.27 min	95	777 (13%)	Generator
^{52m} Mn	21.1 min	97	1434 (96%)	Generator
⁶⁰ Cu	23.7 min	93	1333 (88%)	Cyclotron
^{94m} Tc	52.0 min	70	871 (96%)	Cyclotron
^{110m} In	1.15 h	62	658 (99%)	Generator
120 I	1.35 h	46	560 (72%)	Cyclotron
⁴⁴ Sc	3.97 h	94	1157 (100%)	Generator
86Y	14.7 h	33	1080 (85%)	Large T _{1/2}
⁷⁶ Br	16.2 h	26	559 (58%)	Large T _{1/2}
⁷² As	1.08 d	88	834 (79%)	Generator
¹²⁴ I	4.18 d	23	602 (51%)	Large T _{1/2}

- ✓ Studied at a linear accelerator (CMAM, Madrid)
 - \rightarrow They emit beta-delayed gamma-rays
 - \rightarrow They can label tracers of interest
 - \rightarrow Their half-life is suitable for PET studies
 - \rightarrow Can be produced by proton induced reactions at ~10 MeV
 - \rightarrow Cross-sections subject to uncertainties at low energy

Isotope	Half-life	β ⁺ branch (%)	Main Prompt γ (MeV) and Yield (%)	Target	Reaction	Energy threshold (MeV)	Cross – Section (barn) @ 10 MeV
⁶⁰ Cu	23.4 min	93%	1.333 (80%) & 1.760 (52%)	^{Nat} Ni (26.16% ⁶⁰ Ni)	⁶⁰ Ni(p,n) ⁶⁰ Cu	6.91	0.25
^{52m} Mn	21.1 min	95%	1.434 (98%)	^{Nat} Cr (83.8% ⁵² Cr)	⁵² Cr(p,n) ^{52m} Mn	5.49	0.35
^{94m} Tc	53 min	72%	0.871 (94%)	^{Nat} Mo (9.12% ⁹⁴ Mo)	⁹⁴ Mo(p,n) ^{94m} Tc	5.04	0.55

Experiment

✓ Cockcroft-Walton 5 MV tandetron accelerator at CMAM → 10 MeV proton beam with intensities up to ~1 μ A Natural Ni

Low activation (<2 µCi) as proof of concept Solid thin target foils, Ta backing About 1 min activation Monitoring by efficiency-calibrated HPGe detector

Activation results

Expected yields at the end of bombardment (EOB) vs. measured yields:

Target	Thickness (mm)	Total charge (nC)	Irradiation time (s)	Expected yield EOB (mCi/uAh)	Measured yield EOB (mCi/uAh)
Nat <mark>Ni</mark>	0.200	100.3	10	11.91	12.11
^{Nat} Cr	3.175	506.7	10	100.27	80.35
^{Nat} M0	0.100	3000	60	3.63	5.34

N. Soppera et al., JANIS Book of proton-induced cross-sections OECD NEA Data Bank

- L.P. Szajek et al., Radiochim. Acta 91, 613–616 (2003)
- F. Rösch, et al., Radiochim. Acta 62, 115 (1993) and J. Labelled Compd. Radiopharm. 35, 267 (1994) S.M. Qaim, Nucl. Med. Biol. 27(4) 323 (2000)
- D. W. McCarthy et al., Nuclear Medicine & Biology, Vol. 26, 351 (1999)
- H. I. West et al., Phys. Rev. C35 (1987)

Imaging: iterative image separation

DOUBLE COINCIDENCES DOUBLE+TRIPLE COINCIDENCES J.L. Herraiz R 94mTc FOILS (5x5 mm) TÚMOR • . 68Ga + 94mTc 68Ga 94mTC

(Left) Mouse in the scanner bed with the foils located in the armpit and on the neck. (Right) Reconstructed mPET images

- (A) Image reconstructed using only double coincidences, standard
- (B) (B,C) Reconstructed separated images of ⁶⁸Ga and ^{94m}Tc using double and triple coincidences, VLOR reconstruction Medinet March 2018

Proton activation for PT imaging?

✓ Protontherapy

- \rightarrow Advantages
- → Dose vs. nuclei production (PET, PG...)

 \rightarrow Range...

depth

K. Parodi et al., IEEE Trans. Nucl. Science 52 (2005) 778

Ga production and validation

Cross sections, 9 MeV proton beam at CMAM

Nuclear Instruments and Methods in Physics Research A 814 (2016) 110-116

Experimental validation of gallium production and isotope-dependent positron range correction in PET

L.M. Fraile^{a,*}, J.L. Herraiz^a, J.M. Udías^a, J. Cal-González^{a,1}, P.M.G. Corzo^{a,2}, S. España^{a,3}, E. Herranz^{a,4}, M. Pérez-Liva^a, E. Picado^{a,5}, E. Vicente^{a,6}, A. Muñoz-Martín^b, J.J. Vaquero^c

^a Grupo de Física Nuclear, Dpto. Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Spain
^b Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
^c Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain

Isotope-dependent range correction

Reconstruction of the Derenzo-like pattern at different times after irradiation

Range correction implemented (lower row)

LMF et al, NIM A814 (2016) 110

Cross-sections as a function of **depth in wate**r

- ⁶⁸Ga, ⁶⁷Ga and ⁶⁶Ga on Zn scaled to natural abundances
- ${}^{11}C \text{ and } {}^{15}O$

Possibility for Zn contrast in PT?

L.M. Fraile – GFN-UCM

Dose verification in protontherapy

- CT requires conversion to proton-equivalent stopping power
- ✓ Biological washout of produced isotopes: PET emitters

✓ Proton range needs to be known!

What is the effect of the proton range?

Source of range uncertainty in the patient	Range und without M	certainty Ionte Carlo
Independent of dose calculation Measurement uncertainty in water for commissioning Compensator design Beam reproducibility Patient setup	$\pm 0.3 \text{ mm} \\ \pm 0.2 \text{ mm} \\ \pm 0.2 \text{ mm} \\ \pm 0.2 \text{ mm} \\ \pm 0.7 \text{ mm}$	H. Paganetti, Phys. Med. Biol. 57 (2012) R99
Dose calculation Biology (always positive)	+~0.8%	
CT imaging and calibration CT conversion to tissue (excluding I-values)	$\pm 0.5\%^{a}$ $\pm 0.5\%^{b}$	3.5%+3 mm implies 1 cm extra
C1 grid size Mean excitation energy (I-values) in tissues Range degradation: complex inhomogeneities	$\pm 0.3\%^{\circ}$ $\pm 1.5\%^{\circ}$ $-0.7\%^{\circ}$	for a tumor at 20 cm depth
Range degradation; local lateral inhomogeneities * Total (excluding *, *)	±2.5% ^f 2.7% + 1	1.2 mm
Total (excluding [*])	4.6% + 1	1.2 mm

Monte Carlo simulations

dose

PET

Dose verification

PET, prompt PET

patient 1

patient 3

S. España and H. Paganetti Phys. Med. Biol. **55** (2010) 7557

patient 2

Prompt gamma-rays

Gamma-ray detection module

Nuclear scatter promote nuclei to excited states that decay through emission of single gamma

Protoacustics

Talk by D. Sánchez-Parcerisa

> PET clinical experience

- GSI (1997-2004) in-beam, off-spill measurements
- HIT Germany (2013-2017): offline PET/CT after irradiation Pending results of clinical trial
- MGH USA (2006-2011): offline PET/CT, in-room neuroPET Physical studies, Monte Carlo, cross sections
- NCC Japan (2010): used to monitor changes in daily activity. Short in-room

>Prompt Gamma experience

- OncoRay (Dresden, Alemania) with Slit Camera by IBA (2016)
- UPenn (Philadelphia, USA) with Slit Camera de IBA (2017)

'None of the present implementations can be classified as satisfactory' K. Parodi, Med. Phys. 42:12 (2015) 7153

PRONTO project

- 1. Biophysics simulation package including PET and promptgamma activation
- 2. Exploration of contrast agents for PET and PG
- 3. Development of new detectors for these imaging modalities
- 4. Collaboration with clinical partners to eventually include results in clinical protocols

L.M. Fraile – GFN-UCM

PRONTO

✓ Partners

- → GFN-UCM (coordinator): LMF, S. España, D Sánchez-Parcerisa, JM Udías, J.L. Herraiz
- → BIOMED-CIEMAT: M.A. Morcillo, E. Romero, N. Magro
- → FNEXP-IEM-CSIC: E. Nácher, M.J.G. Borge, O. Tengblad

✓ Associates

- → Sedecal Molecular Imaging
- → CUN: clinical beam (+patients)
- → Justesa Imagen: radiopharmaceuticals
- \rightarrow CMAM: low energy beams
- ✓ Funded for 4 years (2018-2021) by

Clinical beam in Spain?

✓ Prospects in Madrid

→ Quirón Salud

→ Clinica Universitaria de Navarra: HITACHI

L.M. Fraile – GFN-UCM

News Release

FOR IMMEDIATE RELEASE

HITACHI Inspire the Next

Hitachi to Install New Proton Beam Therapy System in Spain

Tokyo, December 15, 2017--- Hitachi, Ltd. (TSE:6501) today announced that it has entered into an agreement to provide Clínica Universidad de Navarra (CUN) with its proton beam therapy (PBT) system. The agreement includes PBT system maintenance following completion of the systems' installation.

The PBT System will be installed at CUN's facility in Madrid, Spain and is equipped with state of the art technology including spot scanning capability* for treating certain forms of cancer. The System includes a compact synchrotron accelerator, full rotating gantry with cone beam CT and the option to add an additional gantry treatment room in the future. PBT patient treatment using the new system is expected to start at the hospital in the spring of 2020.

PBT is an advanced type of cancer radiotherapy. Protons, the atomic nucleus of hydrogen, are accelerated at high speed and its energy is concentrated on the tumours. PBT improves the quality of life for cancer patients since patients experience no pain during treatment and the procedure has fewer impacts on bodily functions. In most cases, patients can continue with their normal daily activities while undergoing treatment.

Biophysics simulation package

- → Study of existing MC packages: PeneloPET, GATE, TOPAS...
- \rightarrow Cross sections
- → Inclusion of PET/PG isotope activation in FoCa / matRad
- \rightarrow Washout models
- \rightarrow Experimental validation, phantoms, tissues: CMAM + ...
- ✓ Development of contrasts
 - \rightarrow ex. Zn for several Ga β^+ emitters (channel open at low E)
 - \rightarrow What concentration can we provide? In which form?
 - \rightarrow Apart from radiation, what other biological effects can appear?
 - \rightarrow Other isotopes for PET?
 - \rightarrow PG isotopes

L.M. Fraile – GFN-UCM

Objectives (2)

✓ Detector developments

- → PG detector based on FATIMA technology
 - comparison with SEDECAL design
 - Fast and efficient detectors
- → Adapt CEPA detector for proton range verification
 - Protons and gamma-rays
 - Good energy range

✓ Clinical application

- → Guide research by realistic ojectives and utility for future practice
 - Contact with facility and oncologists

Acknowledgements

Thank you!

B2017/BMD-3888 Programas de I+D en Biomedicina 2017

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

FPA2015-65035-P

