



# **COMPARISON BETWEEN ANGER AND** COMPTON CAMERAS FOR MEDICAL IMAGING: A MONTE CARLO SIMULATION STUDY

M. Fontana<sup>1</sup>, D. Dauvergne<sup>1,3</sup>, J. Krimmer<sup>1</sup>, J.M. Létang<sup>2</sup>, J.L. Ley<sup>1</sup>, V. Maxim<sup>2</sup>, E. Testa<sup>1</sup>

<sup>1</sup>Institut de Physique Nucleaire de Lyon, <sup>2</sup>Laboratoire CREATIS, Lyon, <sup>3</sup>Laboratoire de Physique Subatomique et de Cosmologie de Grenoble

### NUCLEAR MEDICINE: STATE OF THE ART

- Detection of  $\gamma$ -rays emitted by radioactive isotopes injected into the patient
  - \* **SPECT** (Single Photon Emission Computed Tomography)
  - $\rightarrow$  Anger camera: detector with mechanical collimation systems
  - $\rightarrow$  Low energy radiotracers e.g. <sup>99m</sup>Tc (140 keV), <sup>131</sup>I (364 keV)
  - $\rightarrow$  Forced trade-off between efficiency and spatial resolution
    - $\cdot$  3×10<sup>-4</sup> and about 10 mm respectively [1] (10 cm source distance)
  - $\hookrightarrow$  Important  $\gamma$ -rays attenuation in the patient (loss of spatial information and patient dose)





- $\Rightarrow$  Higher energy radiotracers suggested
- $\Rightarrow$  Need for new detection solutions

Standard SPECT system scheme, in Wernick-Aarsvold, Emission Tomography: The fundamentals of PET and SPECT

SPECT brain image.

 $\Rightarrow$  Simulation study for direct comparison of a commercial Anger camera to a novel Compton camera prototype[2]

## COMPTON CAMERA (CC)

Prototype development [3] by CLaRyS collaboration (5 French labs). Modeled with Geant4 v.9.6, MLEM reconstruction algorithm

#### • Absorber

- $\star$  8×6 BGO streaked block matrix, 28×21 cm<sup>3</sup>, 15 cm distance from the last scatterer plane
- \* 4 PMs (Photo-Multipliers) for each block
- \* FWHM resolutions: 3 ns time, 21% energy @ 667 keV, 4.4 mm spatial transverse plane
- Scatterer
- \* 7 DSSD (Double-Sided Silicon Detectors) 96x96x2 mm<sup>3</sup> planes, 1.4 mm strip pitch, 1 cm distance between each plane \* FWHM resolutions: 20 ns time,  $\simeq$  5 keV energy, 1 mm spatial



Compton camera scheme.

- 2D-3D imaging
- Wide energy range acceptance

### ANGER CAMERA (AC)

General purpose Infinia gamma camera provided by GE Healthcare [4]. Modeled with GATE v7.1 (Geant4 Application for Tomographic Emission)

- HEGP (High Energy General Purpose) collimator
- $\star$  19 $\times$ 28 $\times$ 6.6 cm<sup>3</sup> Lead
- \* Hexagonal holes 2.0 mm radius in quincunx structure, 1.8 mm septal thickness
- Gamma detector
- $\star$  19×28×1 cm<sup>3</sup> Nal

4 mm FWHM spatial resolution,

10% FWHM energy resolution @ 140 keV, 80 keV energy threshold

• Back compartment (photo-multiplier tubes)  $\star$  19 $\times$ 28 $\times$ 2.5 cm<sup>3</sup> - Glass



Infinia camera by GE Healthcare.

- 2D transmission image
- Optimized for energies

Energy

245keV

— 555keV

— 1099keV

— 1524keV

• High detection efficiency

below 364 keV

• Low transmission

efficiency

#### Methods

Detectors exposition to point-like mono-energetic  $\gamma$  sources at 10 cm distance from the first

scatterer plane (CC) or from the collimator entrance (AC)

- 13 actual sources with  $\gamma$  emission ranging from 245 keV to 2614 keV studied
- Background rejection analysis performed on Anger camera data to retrieve the useful signal
- Compton camera events selected as coincidences between an interaction in a single scatterer plane and an interaction in a single absorber block
- Timing study for coincidence detection in Compton camera (20 ns coincidence window): 50% of random coincidences @ 200 MBq source activity
- System comparison based on three figures of merit:
  - \* **RMS of radial events distribution** after background subtraction
  - \* **Detection efficiency**: ratio between selected events and total emitted primary photons
  - \* Selected events efficiency: ratio between selected events and all detected events



Anger camera event radial distribution for four reference energies,  $10^8$  primary photons simulated.



Radius [mm]

#### RESULTS $\times 10^{-}$ $\hookrightarrow$ CC efficiency: gain of a factor > 20 Compton Camera Compton Camera 🕂 🛉 Anger Camera $\hookrightarrow$ CC spatial resolution: favorable for E > 500 keV + Anger Camera 10 $\overset{\circ}{\overset{\circ}{\phantom{}}}_{1,2}$



#### REFERENCES

- [1] D.L. Gunter in Wernick-Aarsvold, Emission Tomography: The Fundamentals of PET and SPECT, Elsevier Academic Press, (2004)
- [2] M. Fontana et al.

Phys. Med. Biol. (2017), https://doi.org/10.1088/1361-6560/aa926a

#### J. Krimmer et al. |3|

Nuclear Instruments and Methods in Physics Research Section A, 787, 98-101, (2015)

GE Healthcare, Infinia [4] Release 2.5 (2006-06)

#### ACKNOWLEDGEMENTS

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon and by France HADRON

(ANR-11-INBS-0007), within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).