

university of groningen

kvi - center for advanced radiation technology

Imaging patient and beam: developments at KVI-CART

Peter Dendooven

MediNet Midterm Meeting Belgrade, March 12-14, 2018

Contents

- > Proton therapy in Groningen
- Imaging the patient
 - dual-energy CT
 - proton radiography
- > Imaging the beam
 - beam-on PET of very short-lived isotopes
 - dSiPM radiation hardness
- > Financing for experiments at the AGOR cyclotron facility
 - ENSAR2
 - **INSPIRE**
 - ESA

groningen

UMC Groningen Proton Therapy Center

- IBA ProteusPLUS
- 2 treatment rooms
- capacity ~ 600 patients per year

start of operations: 22 January 2018 first proton therapy treatment in the Netherlands

www.umcgroningenptc.nl/en/

Imaging the patient

from anatomy to proton stopping power

3-4% uncertainty in proton range imposes a safety margin around tumour

better

- information at multiple X-ray energies, e.g. dual-energy CT (DECT)
- information from protons: proton radiography/CT

Multiple X-ray energies: DECT

dual-energy CT

Experimental investigation

(DE)CT at UMCG

proton stopping power at KVI-CART

high-accuracy (≤ 0.05 mm) range measurements

Multiple X-ray energies: DECT

dual-energy CT

Single energy vs. dual energy CT

more accurate patient specific tissue proton stopping powers

J.K. van Abbema et al., Phys. Med. Biol. 60(2015)3825 J.K. van Abbema, PhD Thesis, University of Groningen (2017) www.rug.nl/research/portal/files/49770163/Complete_Thesis.pdf

Proton radiography

TPC + Timepix/Timepix3

in collaboration with

Results proton radiography

The optimal balance between quality and efficiency in proton radiography imaging technique at various proton beam energies: A Monte Carlo study Biegun AK, van Goethem M-J, van der Graaf ER, van Beuzekom M, Koffeman EN, Nakaji T, Takatsu J, Visser J and Brandenburg S *Physica Medica* **41** (2017) 141-146

Proton radiography with Timepix based time projection chambers Biegun AK, Visser J, Klaver T, Ghazanfari N, van Goethem MJ, Koffeman E, van Beuzekom M, and Brandenburg S *IEEE Transactions on Medical Imaging* **35** (2016) 1099-1105

Proton energy and scattering angle radiographs to improve proton treatment planning: a Monte Carlo study Biegun AK, Takatsu J, Nakaji T, van Goethem MJ, van der Graaf ER, Koffeman EN, Visser J, and Brandenburg S *Journal of Instrumentation* **11** (2016) C12015

Proton radiography to improve proton therapy treatment Takatsu J, van der Graaf ER, Goethem MV, van Beuzekom M, Klaver T, Visser J, Brandenburg S, and Biegun AK *Journal of Instrumentation* **11** (2016) C01004

Timepix3-based detectors

4 detectors:

 $2 \times 100 \ \mu m$ thick silicon $2 \times 300 \ \mu m$ thick silicon

14 x 14 mm² 55 x 55 μ m² pixels

readout speed: 100 frames/s

modes of operation:

- counting
- energy
- time

groningen

FitPix radiography setup at KVI-CART

university of groningen

kvi - center for advanced

radiation technology

Imaging the beam

principle: production of secondary gamma radiation correlates with radiation dose

treatment planning CT simulated dose

Dendooven P et al

treatment planning CT oxygen-15 production

treatment planning CT potassium-38 production

(Very) short-lived positron emitters

IOP Publishing | Institute of Physics and Engineering in Medicine

Phys. Med. Biol. 60 (2015) 8923-8947

Short-lived positron emitters in beam-on **PET imaging during proton therapy**

P Dendooven¹, H J T Buitenhuis¹, F Diblen^{1,3}, P N Heeres¹, A K Biegun¹, F Fiedler⁴, M-J van Goethem², E R van der Graaf¹ and S Brandenburg¹

Phys. Med. Biol. 62 (2017) 4654-4672

Beam-on imaging of short-lived positron emitters during proton therapy

H J T Buitenhuis¹, F Diblen^{1,2}, K W Brzezinski¹, S Brandenburg¹ and P Dendooven¹

$^{12}N, T_{1/2} = 11 \text{ ms}$

groningen

Beam-on, in-beam, on-line PET

detector characteristics (for true beam-on PET):

- need time-of-flight (TOF-) PET ٠
- high singles count rate (~25 kcps per cm² detector surface area) • singles rate capability of modern TOF-PET detectors is fine, but electronics and data acquisition needs to be dedicated
- need anticoincidence with accelerator RF to reject prompt signals •
- radiation hardness (SiPM !) •

experiments using the **PDPC Module-TEK**

groningen

Beam-on PET experiment

Rejection of prompt signals

N-12-only imaging

N-12-only imaging

1D N-12 activity profiles in graphite

5 mm graphite target shift \rightarrow 6 ± 3 mm PET profile shift

groningen

N-12 imaging during treatment: simulation

- 1 proton spot on a graphite target
- no long-lived contribution

groningen

large dual-panel PET scanner

Radiation hardness dSiPM

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 7, JULY 2017 Radiation Hardness of dSiPM Sensors in a Proton Therapy Radiation Environment

Faruk Diblen, Tom Buitenhuis, Torsten Solf, Pedro Rodrigues, Emiel van der Graaf, Marc-Jan van Goethem, Sytze Brandenburg, and Peter Dendooven, *Member, IEEE*

PHILIPS

In-situ and in-room installations

In-situ: DCR ratio after/before irradiation

- dark count rate (DCR) is used to assess radiation damage
- DCR ratio for every cell, ~2 x 10⁵ per 32x32 mm² tile

In-situ: recovery of damage

- dark count rate (DCR) is used to assess radiation damage
- DCR ratio for every cell, ~2 x 10⁵ per 32x32 mm² tile

In-room: DCR

In-room: DCR

In-room: effect on PET performance

before or after	fraction cells enabled	∆ E/E [%]	CRT [ps] trig. scheme 2	counts rel. to trig. scheme 4 [%]			
detectors at 2 m							
before	90%	11.2 / 11.3	306				
after	90%	11.2 / 11.3	304				
after	80%						
detectors at 4 m							
before	90%	11.7 / 12.0	310				
after	90%	11.7 / 12.7	315				
after	80%						
	detector behind concrete wall						
before	90%	11.6	308				
after	90%	11.7	306				
after	80%						

In-room: effect on PET performance

before or after	fraction cells enabled	∆ E/E [%]	CRT [ps] trig. scheme 2	counts rel. to trig. scheme 4 [%]		
detectors at 2 m						
before	90%	11.2 / 11.3	306	95		
after	90%	11.2 / 11.3	304	56		
after	80%					
	detectors at 4 m					
before	90%	11.7 / 12.0	310	89		
after	90%	11.7 / 12.7	315	80		
after	80%					
detector behind concrete wall						
before	90%	11.6	308	89		
after	90%	11.7	306	86		
after	80%					

In-room: effect on PET performance

before or after	fraction cells enabled	∆ E/E [%]	CRT [ps] trig. scheme 2	counts rel. to trig. scheme 4 [%]			
detectors at 2 m							
before	90%	11.2 / 11.3	306	95			
after	90%	11.2 / 11.3	304	56			
after	80%	11.5 / 11.4	309	91			
detectors at 4 m							
before	90%	11.7 / 12.0	310	89			
after	90%	11.7 / 12.7	315	80			
after	80%	12.7 / 12.8	335	95			
detector behind concrete wall							
before	90%	11.6	308	89			
after	90%	11.6 / 11.7	306	86			
after	80%	11.8	328	97			

Conclusions radiation hardness

- > experiments using digital SiPM from PHILIPS
 - **in-situ geometry:** significant increase in DCR
 - digital infrastructure of the sensor unaffected

→ too severe sensitivity loss after 1-2 weeks of clinical operation of a proton therapy treatment room

in-room geometry: - moderate increase in DCR

- disabling damaged cells mitigates drop in **PET** performance

 \rightarrow PET performance expected to be maintained for over 3 years of clinical operation of a proton therapy treatment room

> how about other types of SiPM ?

groningen

Experiments at KVI-CART - AGOR

www.rug.nl/kvi-cart/research/facilities/agor/

AGOR operating diagram / available beams

radiation technology

Financing for experiments at KVI-CART

ENSAR2

- > 1 March 2016 to 29 February 2020
- KVI-CART trans-national access: 700 hours

- INSPIRE: INfraStructure in Proton International REsearch cordis.europa.eu/project/rcn/213378_en.html
- 1 March 2018 to 28 February 2022
- > links clinical proton therapy centres in 11 European countries and 2 centres in the US; IBA and Varian participate
- > KVI-CART trans-national access: 600 hours

- CORA-IBER: Continuously Open Research Announcement for Investigating the Biological Effects of Space Radiation
- KVI-CART as ESA Ground-Based Facility
- > up to €50 000 for each proposal selected after peer review www.esa.int/Our_Activities/Human_Spaceflight/Research/New_radiation_research_ programme_for_human_spaceflight/(print) esamultimedia.esa.int/docs/hsf_research/cora/CORA-IBER-information-package.pdf

www.rug.nl/kvi-cart/research/facilities/agor/access

