

Characterization of a Compton Camera setup with monolithic LaBr₃(Ce) absorber and segmented GAGG scatter detectors

S. Liprandi, IEEE Student Member¹, S. Takyu², S. Aldawood^{1,4}, T. Binder¹, G. Dedes¹, K. Kamada³, R. Lutter¹, M. Mayerhofer^{1,5}, A. Miani^{1,6}, A. Mohammadi, IEEE Member², F. Nishikido², D.R. Schaart, IEEE Member⁷, I.I. Valencia Lozano¹, E. Yoshida², T. Yamaya, IEEE Member², K. Parodi, IEEE Member¹ and P.G. Thirolf¹

e-mail: Silvia.Liprandi@physik.uni-muenchen.de

¹⁾ Department of Medical Physics, Ludwig-Maximilians Universität München, Munich, Germany; ²⁾ National Institute of Radiological Sciences (NIRS) at National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan; ³⁾ C & A corporation, Sendai, Japan; ⁴⁾ Department of Physics and Astronomy, King Saud University, Riyadh, Saudi Arabia;

⁵⁾ Department of Physics, University of Hamburg, Hamburg, Germany; ⁶⁾ Department of Physics, Università degli Studi di Milano, Milano, Italy; ⁷⁾ Delft University of Technology, Delft, The Netherlands

A Compton Camera (CC) system can provide an in-vivo proton / ion beam range monitoring via detecting secondary **prompt-***y* rays (PG) emitted from nuclear reaction of the particle beam with biological samples [1] and correlated to the Bragg peak position.

Exploiting **Compton kinematics**: $cos\vartheta = 1 - m_ec^2 \left| \frac{1}{E_a} - \frac{1}{E_s} \right|$, the **PG image** can be reconstructed (figure on the right).

A proof of principle study is presented for a **Compton Camera system** composed of a scatterer component consisting of a **pixelated GAGG crystal** and an absorber consisting of a **monolithic LaBr₃(Ce) crystal**.

\Rightarrow Scatter E_s, x_s, y_s, z_s E_s, x_s, y_s, z_s Absorber E_a, x_a, y_a, z_a x_a, x_a, y_a, z_a

Results

Fig.2 Example of position reconstruction using CAP algorithm for one event in the monolithic $LaBr_3(Ce)$ scintillator. The white cross at the lower border indicates the calculated position of the photon source.

2D Gaussian fit

Parameter

 $\Delta \mathbf{X}$

 Δy

Value

-0,34 mm

0,76 mm

Decay time [ns]	92	Detector	specifications	LaBr ₃	SOURCE
Light output [photons / MeV]	~ 56000	Energy resolution [3]		3.8% @ 662 keV	 Cs-137 source Calibration source (non collimated) Au con=233.6 kBq
Emission wavelength [nm]	520			(measureu)	
Density [a / cm ³]	6.63	Spatial resolution [5]		4.4(1) mm	(Jan2017) - 200,0 KBQ
Internal radioactivity	no	Spatial information		kNN / CAP /algorithm [2]	 READOUT SYSTEM Individual spectroscopy (NIM+VME) electronic, digitizing energy and time signals
Detector specifications	GAGG	Energy Categorical Average		ge K-Nearest-	
Energy resolution	6.3% @ 662 keV (from simulations)	[Mev]	Pattern (CAP) [mr	n] Neighbours (kNN) [mm]	IMAGE RECONSTRUCTION
Spatial resolution	1 mm	0.662	4.4(1)	4.7(1)	 MEGAlib toolkit [6], based on the
Spatial information	Anger-logic calculation	1.17	3.0(2)	3.1(2)	List-Mode Maximum-Likelihood
		1.33	2.9(1)	2.9(1)	Expectation-Maximization
					(LM-ML-EM) algorithm

Signal processing and data acquisition

- Acquisition via PPC RIO in VME crate Marabou software [4].
- Hardware trigger: sum signal of LaBr₃ (absorber).
- CFD, QDC modules (MCFDs and MQDCs Mesytec). Thresholds applied in CFD modules.
- Corrections: gain matching, pedestal cut, PMT non-uniformity.

Selection of data (Compton data)

- Graphical cut applied on 2D energy plot (= coincidence events) \rightarrow Extract the data contained in this energy window.
- Creation of text files must contain (for both detectors):
 - Total energy deposited in each detector
 - x, y, z position coordinates (z = fixed to middle of crystal)
 - LaBr₃: kNN / CAP algorithm applied:
 - An unknown photon event is compared to a light amplitude Reference Library [2]. In Fig.1 an example of an event reconstructed using the CAP algorithm (an improved version of the kNN algorithm) is shown.

+D)

• GAGG: Anger logic calculation (from 4 single signals):

$$X = \frac{-(A+C) + (B+D)}{(A+C)} \qquad Y = \frac{-(A+B) + (C)}{(A+C)}$$

Fig.3 Source image reconstruction for *a)* the (0,0) [mm] source position: from simulated data (left) and experimental data (right). b) the (-8,-8) [mm] source position: from simulated data (left) and experimental data (right). c) the (-16,-16) [mm] source position: from simulated data (left) and experimental data (right). For all the recostructed images around 15000 events were used and 20 iterations of the algorithm have been performed.

Conclusions and Outlook

Successfully merged datastream from two different data acquisition chains.

- [1] J. Krimmer et al.: Prompt-gamma monitoring in hadrontherapy: A review, Nuclear Inst. And Methods in Physics Research, A, 2017.
- [2] Van Dam H.T. et al.: Improved Nearest Neighbor Methods for Gamma Photon interaction position determination in monolithic scintillator PET detectors, IEEE Trans. Nucl. Sci., 58: 2139-2147, 2011.
- [3] S. Aldawood et al.: Comparative characterization study of a LaBr₃(Ce) scintillation crystal in two surface wrapping scenarios: Absorptive and reflective, Frontiers and Oncology, 5:270, 2015.
- [4] R. Lutter et al.: MARaBOU a MBS and ROOT based Online/Offline Utility, IEEE Trans. Nucl. Sci. 47: 280-283, 2000.
- [5] S. Liprandi et al.: Sub-3mm spatial resolution from a large monolithic LaBr₃ (Ce) scintillator, Current Directions in Biomedical Engineering 3(2): 655-659, 2017.

[6] A. Zoglauer et al.: MEGAlib – The Medium Energy Gamma-ray Astronomy Library, New Astronomy Reviews 50: 629-632, 2006.

Acknowledgment: This work is supported by the NIRS International Open Laboratory, the DFG Cluster of Excellence Munich Centre for Advanced Photonics (MAP), King Saud University (KSU).

