

On the way to the Clinics: Tackle the Challenges in Prompt Gamma-Ray Timing

Theresa Werner

OncoRay - Dresden

Leader Medical

Physics:

Wolfgang Enghardt

Group Leader:

Guntram Pausch

"In-vivo Dosimetry for new Types of Radiation"

Postdoctoral Fellow:

Toni Kögler

PhD student

Theresa Werner

Range Verification in Proton Therapy

Theresa Werner | Institute of Radiooncology | Medical Radiation Physics | www.hzdr.de

Member of the Helmholtz Association

2

Signatures for Range Verification

Concepts for Range Verification

Concepts

- Energy measurements
 - Prompt Gamma Spectroscopy Figure 1: Schematic drawing of the three campaigns for the prompt gamma aquisition from proton-irradiated phantoms using: a no collimation; b) slit collimation; c) semi-collimation.
- Spatial measurements
 - Compton Camera / Slit Camera

Gabriela Llosa "MACACO II upgrade and first results"

- Timing measurements
 - Prompt Gamma Timing (PGT)

Theresa Werner "Prompt Gamma-Ray Timing"

Slit Camera

PG Spectroscopy

Compton Camera

Prompt Gamma Timing

Member of the Helmholtz Association

Principle of Prompt Gamma Timing

- Protons enter the tissue and excite nuclei
- Production of prompt gammas along particle track
- Record time resolved emission profile
- Longer range is reflected in a longer period of prompt gamma emission
- Time differences in ps scale
- Measure for range shifts

 Δ width of PGT spectra (standard deviation Δσ)

 Δ position of PGT spectra (mean Δμ)

Member of the Helmholtz Association

Proof of Prompt Gamma Timing

- PGT spectra measured in treatment Room (PBS Mode)
- Setup
 - ► 225 MeV Protons
 - ► One Layer 1000 MU
 - ► 1.43x10¹¹ incoming protons
 - ► CeBr₃ (2"x2") detector
- Lack of prompt gamma production due to air cavity
- Overshoot caused by longer range

Member of the Helmho

Experiments at OncoRay - Dresden

Experiments at Treatment Room

Pencil Beam Mode (PBS)

- Hollow PMMA target with inserts (e.g air, bone)
- Treatment conditions ➤ doses, dose rate, volume

PGT detection unit

- ø 2"x1...2" CeBr₃
- ΔT = 225 ps @ 4.5 MeV
- ΔE/E = 2.5 % @ 2.5 MeV
- 1 Mcps (asymptotic) throughput

Experimental setup in clinical treatment room

CeBr₃ PMT Digital spectrometer

PGT detection unit

Member of the Helmholtz Association

Experiments at Treatment Room

Pencil Beam Mode (PBS)

- Tumor-volume splitted in several iso-energy slices
- Spot-wise dose deposition in the target volume

Member of the Helmholtz Association

Challenges towards Clinical Translation

Dose delivery constraints

- A) Strong detector load variations due to layer structure
- B) Ensure statistic in short irradiation time (Spot ~ ms)

Accelerator

- C) Unstable time correlation between cyclotron RF and proton bunches
- D) Oscillation of the phase between bunch and RF

Member of the Helmholtz Association

Dose Delivery Constraints

t/s

State of the state of the

14

t/s

12

A) Load variations

- Gain depends on detector load
- Effects on gain and timing
- Corrections applied in the data analysis

600 Kcps

511 keV

8

10

6

Member of the Helmholtz Association

Theresa Werner | Institute of Radiooncology | Medical Radiation Physics | www.hzdr.de

Energy / a.u

55

50

40

35

30

25

20

Dose Delivery Constraints

B) Treatment time

- Acquisition time few ms per spot
- Limiting factor is electronic / DACQ
- High detection rate > 10⁶ cps

Global shifts:

Layer: ~ sec

Local shifts:

Spot: ~ ms

Member of the Helmholtz Association

Accelerator

C) Bunch drifts

- Unstable time correlation between cyclotron RF and proton bunches
- Shift of leading edge of the PGT spectra

Member of the Helmholtz Association

Accelerator

D) RF Oscillation

- Up/down regulation of high voltage between layers
- leads to oscillating bunch phase

Solutions

A) Load variations

- Track 511 keV line for event-wise correction function
- **B)** Statistics
- Use multiple detectors for treatment monitoring
- C,D) Bunch drift and accelerator RF oscillation
- Use proton bunch monitor to detect the bunch phase

Member of the Helmholtz Association

Experimental Results

Pencil Beam Scanning

- 22 x distal layer of so called "Dose Cube Plan"
- 1 Gy per Plan
- 500 kcps detector throughput

Member of the Helmholtz Association

Local Range Shifts

Spot-wise analysis of distal layer

- 1 Gy PBS plan
- about 2.2 x 10⁸ protons per spot
- PGT spectra per Spot
 Mean μ and standard deviation σ
- Measure for range shift

 $\Delta \mu_{\text{Spot}} = (\mu_{\text{Ref}} - \mu_{\text{Cav}})$

 $\Delta \sigma_{\text{Spot}} = (\sigma_{\text{Ref}} - \sigma_{\text{Cav}})$

Imaging of Local Range Shifts

Data without corrections

Raw data

Data with corrections

- Gain correction
- Energy cut (3-5MeV)
- PGT cut
- Statistic of 2 detectors (22 Layer)
- Without bunch monitor

Member of the Helmholtz Association

Conclusion

- PGT tested under treatment conditions
- PBS treatment plan structure retrievable
- Global and local range shifts detectable
- 20 mm to 5 mm shifts detectable for a 1 Gy plan with 6 detectors

Next Steps

- PGT snout for defined detector reproducibility
- Clinical trials of PGT

L. Koffel

Thank you

Member of the Helmholtz Association