

ST 13 – Creation of an integrated platform for spatial resolution determination in a monolithic scintillator

M. Kawula, S. Liprandi, T. Binder, M. Mayerhofer, K. Parodi and P.G. Thirolf

E-Mail: Maria.Kawula@physik.uni-muenchen.de

Faculty of Physics - Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching b. München, Germany

→ The existence of the Bragg peak requires a high-precision monitoring of the beam stopping range in the tissue

light distributions:

Source: ⁶⁰Co (1.3 MeV)

16x16 set of 2D

SCATTENDI SCATTENDI

 \rightarrow The correlation between the **spatial prompt** γ -ray distribution, emitted from nuclear reactions of the beam, with biological samples and the Bragg peak position enables to use prompt γ emission to verify the range of the hadron beam [1]

 \rightarrow The clinical application requires determination of the prompt γ emission position in **real time**

Methods

Categorical Average Pattern Algorithm (CAP)

Algorithms enabling γ-ray position reconstruction in a monolithic scintillator rely on a comparison of the measured 2D light amplitude to a set of 2D reference library events [2]

Reference library

Reference events are generated by irradiation of the monolithic detector surface by a tightly collimated

 γ -ray source

- \rightarrow about 100x100 irradiated positions
- \rightarrow 400 photopeak events in every position
- → In total 4x10⁶ library entries

composed by a scatter and an absorber component

$$cos\vartheta = 1 - m_e c^2 \left[\frac{1}{E_2} - \frac{1}{E_1} \right]$$

→ By acquiring energy and position information for each event from the scatterer and the absorber it is possible to reconstruct a **Compton cone/arc**, and by the intersection of all of those, the position of the emitted γ -rays

Results

Platform structure

- \rightarrow New approach is based solely on C++
- \rightarrow Requires less memory in comparison to previous solution (1 GB instead of 10² GB)
- \rightarrow It enables to merge different steps together and make the procedure more automatic

 Choose k best matching signals in a given irradiation position

2) Calculate average light distribution of chosen k events

3) Repeat 1) & 2) for every irradiation position

4) The best matching, averaged light distribution determines the position of an unknown event

Spatial resolution

→ The "leave-one-out" method requires application of the algorithm for every event in the library
 → At least 1.6x10¹³ comparisons of events (each described by 256 light amplitude values) need to be executed

Approach giving good performance (spatial resolution 2.9(1) mm for energy 1.3 MeV, ⁶⁰Co source [3]) but still time and memory consuming

Conclusions & Outlook

→ With the newly developed integrated platform we are able to achieve the same spatial resolution performance as with the previous procedure

 \rightarrow The new platform allows us to reduce the memory usage by a factor of 10², therefore it allows to run the reconstruction process without the need of high performance computers (HPC-cluster)

→ The number of steps needed to obtain the spatial resolution or to reconstruct positions of unknown photopeak events is reduced.

→ The whole procedure is more automatic thus decreasing the error probability

Spatial resolution verification

Spatial resolution calculated for cesium reference library:
→ source: ¹³⁷Cs (0.662 MeV)
→ step size: 0.5 mm
→ 100x100 irradiated positions
→ 400 photopeak events per position

→ Fitting Pseudo-Voight profiles along two perpendicular axes

→ Average of two FWHM values (along x and y axis) determines the spatial resolution of the CAP algorithm for a given library

→ Result for Cs library: **4.68(2) mm**

The spatial resolution obtained using the new platform is consistent with

 \rightarrow All the amount of reference events contained in the library is necessary to achieve the same spatial resolution performance

→ The reconstruction time is highly dependent on the size of the reference library. The presently used amount of data requires a minimum amount of time that is not further reducible

→ The structure of the data was carefully analyzed and there appeared new perspectives to use, for example, *Deep Learning* or *Artificial Neural Network* methods what can reduce reconstruction time [5]. The idea for the first trial will be based on the TMVA, ROOT framework [6]

Acknowledgement

This work was supported by the DFG Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) previous result of 4.71(1) mm[3]

→ The platform structure was also
 checked for an unknown event position
 reconstruction using a data set
 previously acquired in a CC setup [4]

References

[1] J. Krimmer et al.: Prompt-gamma monitoring in hadrontherapy: A review, Nuclear Inst. And Methods in Physics Research, A, 2017.

[2] Van Dam H.T. et al.: Improved Nearest Neighbor Methods for Gamma Photon interaction position determination in monolithic scintillator PET detectors, *IEEE Trans. Nucl. Sci.*, 58: 2139-2147, 2011.
[3] S. Liprandi et al.: Sub-3mm spatial resolution from a large monolithic LaBr₃ (Ce) scintillator, *Current Directions in Biomedical Engineering 3(2): 655-659*, 2017.

[4]S. Liprandi et al., Characterization of a Compton camera setup with monolithic LaBr3(Ce) absorber and segmented GAGG scatter detectors, in Proc. IEEE International Nucl. Science - Medical Imaging Conf., 2017,unpublished.

[5] A.Gostojić et al., Characterization of LaBr3:Ce and CeBr3 calorimeter modules for 3D imaging in gamma-ray astronomy, Nuclear Instruments and Methods in Physics Research A, 832, 2016
 [6] ROOT Data Analysis Framework, TMVA, https://root.cern.ch/tmva