

KETEK

ST4 - Towards an Alternative Absorber Detector for the Garching Compton Camera Prototype

¹ Department of Medical Physics, Ludwig-Maximilians-Universität München, Garching, Germany ²**KETEK GmbH**, Munich, Germany

Motivation: Beam Range Monitoring in Hadron Therapy

Hadron therapy : exploiting Bragg-peak properties for highly localized dose deposit in tumor tissues required Methods for **Bragg Peak** monitoring Offline Online $^{16}O(p,pn)^{15}O$

Present status:

- LaBr₃ scintillator with multi-anode PMT readout and NIM/VME based electronics
- Complete system characterization and commissioning performed at conventional and medical accelerator facilities
- Determination of **spatial information** from **monolithic** LaBr₃:Ce scintillator

The Compton camera is designed to allow for tracking the Compton-scattered electron via an array of double-sided silicon strip detectors (DSSSD)

Current restrictions:

- PMT not usable in environments with magnetic (stray) fields
- Electronics not suitable for identical readout of scatterer and absorber

> Aims:

- Usage of alternative scintillator with negligible internal radioactivity (**CeBr**₃)
- Usage of new, improved photodetector (SiPM)
- Evaluation of an alternative readout electronics (ASIC/FPGA based)
- Alternative scatterer (one layer of **pixelated GAGG**) with SiPM readout

The (current) Compton Camera Prototype

Physical Principle: $\cos\vartheta = 1 - m_e c^2 \left| \frac{1}{E_2} - \frac{1}{E_1} \right|$ Momentum conservation Compton kinematics **Energy conservation** Modes of operation: γ -tracking Thick scatter detector: Compton arc Compton cone Compton e^{-} will be absorbed \longrightarrow cannot add

information to the **Compton kinematics**

Compton Camera (prototype):

- Designed to allow for e⁻ tracking
- Scatterer: stack of 6 DSSSD (0.5 mm thick, 50x50) mm², 128 strips/side)
- Absorber: LaBr₃:Ce scintillator (50x50x30 mm³)
- Scintillator read out:
 - 256-fold multi-anode PMT (Hamamatsu H9500)

- Scatterer made of layers of double-sided Si strip detectors (DSSSD):
 - e^{-} tracking will become possible \longrightarrow will allow to:
 - restrict the Compton cone to an arc segment
 - reconstruct also incompletely absorbed photon events

av origir

New Components:

- **CeBr₃ absorber** with
 - 64-fold PMT readout
 - 256 SiPM readout w/ ASIC/FPGA based electronics
- individual spectroscopy electronics (NIM/VME) for each PMT channel, digitizing energy and time signals
- Evaluation of (22 x 22) pixelated array of GAGG crystal (0.9 x 0.9 x 6 mm³) for use in low-energy photon applications (γ -PET)

Outlook: next experimental steps

- **Spatial resolution** determination of CeBr₃ and LaBr₃(Ce) with 64-fold PMT
- > New electronics for SiPM readout under investigation (PETsys)
- Investigation of pixelated GAGG scatter array with SiPM readout
- > Investigation of simultaneous, but spatially disjunct **photon and electron** detection in monolithic absorber
- > Study for **speeding up** the photon interaction point reconstruction in monolithic crystal
- > Investigation of **multiple photon** detection in monolithic absorber
- > **Depth-of-Interaction (DOI)** measurements in the absorber

References: [1] S. Aldawood, PhD Thesis, LMU/ King Saud University, 2016 This work was supported by the DFG Cluster of Excellence MAP (Munich-Centre for Advanced Photonics), Bayerische Forschungsstiftung and KETEK GmbH